Basic Statistics(08)-Sampling Distribution

 

Basic Statistics - (08) Sampling Distribution

1. Inferential Statistics

Methods to draw conclusion about a population based on data coming from samples.

2. Sampling Distribution and Central Limit Theorem

  • Sampling Distribution

    With infinite number of samples,Distribution of sample means is bell-shaped with a mean equal to the population mean.

  • Central Limit Theorem

    • the sampling distribution of sample mean x_bar is approximately normal (provided that n is sufficiently large).

    • even if the variable is not normally distributed in the population.(n>30)

  • Sample mean

    • \[\mu_{\overline{x}} = \mu\]

  • Sample deviation

    • \[\sigma_{\overline{x}} = \frac{\sigma} {\sqrt{n}}\]
    • 总体方差与样本方差正相关。Larger variation in population :arrow_right:larger variation in samples
      • 样本数量与样本方差负相关。Larger n :arrow_right:lower variation in samples(Central limit theorem!!!)

3. Population distribution & Sample distribution & Sampling distribution

  • Differences of 3 distributions

    • sample distribution是一次取样分布。
    • sampling distribution (theoretical distribution)是无限次取样分布,符合中央极限定理,平均值无限接近总体平均值。
    • population distribution 总体分布。
  • Z-score for sample mean

    这个问题问的是取样平均值在某个区间的概率,应该利用sampling distribution来进行计算。

4. Binominal Sampling Distribution

  • Sampling Distribution of Sample Proportion

    • Sample space

      • \[n * \pi >= 15\]
      • \[n(1-\pi) >= 15\]

        n为每次sample取样,样本个数。所以,一次取样样本量小的话,sampling distribution将不准确。

  • mean

    • \[\mu_p =\pi\]

    pi为事件成功概率。

5. Example

6. Conclusion

无论是二项分布还是正态分布:

  1. 无限次样本量的平均值(sampling mean)都无限接近总体平均值(population mean)。
  2. 由于中央极限定理,无限次样本会趋中,所以方差需要除以样本个数,以降低趋中趋势。