Basic Statistics(06)-Probability Distribution

 

Basic Statistics - (06) Probability Distribution

1. Random Variable(X)

Variables whose possible values are numerical outcomes of a random phenomenon.

  • Discrete
    • countable number of distinct values
  • Continuous
    • infinite number of possible values
  • probability distribution
    • Discrete
      • probability mass function
    • Continuous
      • probability density function
        • a certain internal under the curve rather than the height of the curve.

2. Cumulative Probability Distribution

  • CPD answers two questions

  • Quantile

3. The Mean of a Random Variable

  • \[\mu_x\]
  • mean of random variable

  • add or subtract two random variables: X+/- Y

    \[\mu_{a+bX}=a + b*X\] \[\mu_{x+y} = \mu_x + \mu_y\]

4. Variance of a Random Variable

  • variance 方差

    方差用于衡量随机变量或一组数据的离散程度,方差在在统计描述和概率分布中有不同的定义和计算公式。

    • 概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度;
    • 统计中的方差(样本方差)是每个样本值与全体样本均值之差的平方值的平均数,代表每个变量与总体均值间的离散程度。

  • variance equations

    • plus and minus
    \[var(a\pm X) = var(X)\] \[var(bX) = b^2 * var(X) \\ \sigma(bX) = \sqrt{b^2(var(X))}\]
    • Two Variables X and Y

      \[var(X + Y) = var(X) + var(Y) {\color{BurntOrange}+} 2cov(X,Y) \\ var(X-Y) = var(X) + var(Y) {\color{BurntOrange}+} 2cov(X,Y)\]

  • covariance 协方差 \(cov(X,Y) = E{[(X-\mu_x)(Y-\mu_y)]}\) 公式简单翻译一下是:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值(其实是求“期望”,但就不引申太多新概念了,简单认为就是求均值了)。

    5. Normal Probability Distribution 正态分布

  • 表达式

  • 公式

    \[f(x) = {1\over\sqrt{2\pi}\sigma} * e^{-{1\over2}*({x-\mu\over\sigma})^2}\]
    • μ:总体期望均值

    • σ^2:方差

    • x:随机变量

    • Z score

      • \[{x-\mu}\over{\sigma}\]
  • μ& σ

6.Empirical Rule(68-95-99.7 法则)

7. Z-Score

  • z-score

  • standardized data

  • How to calculate Z-score?

8. Binominal Distribution 二项分布

  • binomial distribution=discrete probability distribution

  • 公式

  • 属性

    \[\mu = n * p\] \[\sigma = \sqrt{np(1-p)}\]

    n: trials

    p: probability of success